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Nonphotochemical Synthesis of a Base-free Silyl(silylene)iron Complex and Its Reaction
with CO: Another Direct Evidence for Reversible 1,2- and 1,3-Group Migrations
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A base-free silyl(silylene)iron complex 1, which had been
originally synthesized by a photochemical method, was prepared
in higher yield by a newly developed thermal method. Reaction
of this silyl(silylene)iron complex 1 with CO at 80°C cleanly
produced a mixture of two isomeric disilanyliron complexes 6
and 6’ via 1,3-group migrations followed by 1,2-silyl migration.
Oppositely, each of disilanyl complexes 6 and 6’ reproduced the
silyl(silylene)iron complex 1 with a release of CO almost quan-
titatively at room temperature by irradiation with a fluorescent
lamp.

During the past two decades, the chemistry of transition-
metal silylene complexes have been extensively studied and
the important role of these species in transition-metal-catalyzed
reactions were often suggested.'> Especially, silyl(silylene)
complexes have been postulated to be key intermediates for
the reactions involving group-migrations such as redistribution
and oligomerization of hydrosilanes on the basis of several indi-
rect evidences.> We have recently succeeded in the synthesis
of the first base-free silyl(silylene)iron complex Cp*Fe(CO)-
(=SiMes,)SiMe; (1) and provided the most straightforward evi-
dence for facile 1,2- and 1,3-group-migration reactions in the
silyl(silylene) complex systems by investigating the reaction of
the isolated 1 with 'BuNC.* Thus, irradiation of Cp*Fe(CO),Me
(2) in the presence of HSiMe,SiMes,Me (3, Mes = mesityl
(2,4,6-trimethyphenyl)) produced 1 in 60% NMR yield, which
was isolated in 40% yield. Complex 1 reacted with ‘BuNC at
80°C to yield Cp*Fe(CO)(CN'Bu)SiMesMeSiMesMe, (4) via
1,2- and 1,3-group migrations. Here, we present the higher-yield
nonphotochemical synthesis of 1 and another clear evidence for
1,2- and 1,3-group migrations on 1 using CO as a reactant.

In the photochemical synthesis of 1 shown in Scheme 1, the
following problems have disturbed the improvement of the
yield: (1) 1 decomposes slowly under irradiation, and this de-
composition is enhanced in the presence of CO probably through
its high reactivity toward coordinated or free silylene,*® and (2)
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prolonged irradiation accumulates the decomposition products
such as Cp*,Fe,(CO)4 etc., which make the purification of 1
more difficult. To overcome these problems, we attempted to re-
place one of CO ligands in 2 with pyridine, a labile ligand for an
electron-rich metal center, which is expected to dissociate easily
to generate A under mild conditions. Thus, Cp*Fe(CO)(py)Me
(5) was successfully prepared in 97% yield by irradiation of 2
in toluene in the presence of excess pyridine. After removal of
volatiles from the toluene solution, 5 was characterized by
'HNMR, BCNMR, and IR spectra.® To a toluene solution of
5 was added a hexane solution of 3, and the mixture was stirred
at room temperature overnight to produce 1 in 70% isolated
yield based on 5 (Eq 1). This nonphotochemical synthetic
method is superior to the previous one because photochemical
decomposition of 1 is avoided and a large-scale synthesis of 1

from 5 is easier.
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We next investigated the reaction of 1 with CO. Complex 1
in toluene was heated to 80°C for 2d under CO atmosphere
to afford an approximately 4:1 mixture of Cp*Fe(CO),-
SiMesMeSiMesMe, (6) and Cp*Fe(CO),SiMe,SiMes,Me (6")
(Eq 2). The total yield of the mixture of 6 and 6’ was 68%. Wash-
ing the mixture of 6 and 6’ with hexane several times left the
yellow solid of pure 6’7 in 6% yield. From the washings, after
removal of solvent, recrystallization of the residue from pentane
afforded yellow crystals of 6% in 11% yield. These complexes
were fully characterized by elemental analysis, 'HNMR,
BCNMR, #SiNMR, 'H-?SiCOLOCNMR, IR, and Mass
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The existence of two carbonyl ligands in 6 was confirmed by
observation of two signals for CO ligands, mutually diastereo-
topic, at 219.7 and 220.9 ppm in the '>*CNMR spectrum, and
two V(CO) bands at 1973 and 1919cm™! in the IR spectrum.
The *’Si NMR signals appear in the normal region of the disil-
anyl iron complexes (10.7 ppm for the «¢-Si atom and —11.4 ppm
for the B-Si atom (Eq 2)). The methyl groups on the terminal -
Si atom show their signals inequivalently at 0.75 and 0.91 ppm in
the '"HNMR spectrum. This is because these two methyl groups
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are diastereotopic due to the chirality of the -Si atom bound to
the Fe atom. The signal of a methyl group on the «-Si atom
appears at 1.00 ppm. The assignment of these signals is based
on the '"H-?°Si COLOC NMR spectrum. Other spectral data of
6 closely resemble those of 4, whose structure has been deter-
mined by X-ray crystallography,* except the signals for the
"BuNC ligand in 4.

The structure of complex 6’ is more symmetric than that of
6. In the '"HNMR spectrum, a singlet signal for two methyl
groups on the o-Si atom appears at 0.65 ppm and that for a meth-
yl group on the B-Si atom at 1.20 ppm. Two mesityl groups on
the B-Si atom are equivalent and exhibit only one set of three
signals for the o-Me, m-H, and p-Me groups. The 3C NMR
spectrum shows a single signal for two carbonyl ligands at
219.6 ppm, while the IR spectrum displays two V(CO) bands at
1975 and 1921 cm ™', indicating the presence of two CO ligands.
The 2°Si NMR signals appear at 18.5 ppm for the @-Si atom and
—16.6 ppm for the B-Si atom. These assignments were also
confirmed by the "H-??Si COLOC NMR spectrum.

From the isolated 6 and 6, the reverse reaction forming 1
was observed under soft irradiation of light: When a C¢Dg solu-
tion containing 6 or 6’ in a Pyrex NMR tube was irradiated at
room temperature with a fluorescent lamp for 17-38h, 1 was
recovered almost quantitatively with a release of CO (Eq 3).
Irradiation with a 450 W medium pressure Hg lamp also afforded
1 but in lower yield because of the decomposition of 1.
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A mechanism for the formation of 6 and 6 from 1
(Scheme 2) is essentially the same as that previously reported
for the formation of 4.* The key steps consist of (1) a thermal
equilibrium among three isomeric silyl(silylene) complexes
(1, B, and C) via 1,3-methyl or mesityl migrations, (2) 1,2-silyl
migrations from B and C to produce unsaturated disilanyl
complexes D and E, and (3) coordination of CO to D and E to
produce 6’ and 6. The preferred formation of 6 compared to 6’
is attributable to the preferred formation of C compared to B,
which is due to the instability of B compared to C caused by
the steric repulsion among Cp* and two mesityl groups on the
silyl ligand. The reverse reaction from 6’ or 6 to 1, initiated by
photodecarbonylation, can be reasonably explained by tracking
back the same mechanism. Importantly, in this research, we
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proved that all the 1,2-silyl and 1,3-group-migration steps
between 1 and 6 or 6’ are reversible under mild conditions.
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